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SYMBOLS

rigid body located at point P in which the vectors i, j, k
are fixed

cosine ( )

beam torsional rigidity, N-m 2

kinetic energy minus potential energy, N-m

unit vectors fixed in body B that, for the initial position of

B, lie along the axes x,y,z and for the final position of

B, the deformed state, lie along the axes x3' Y3' z3

unit vectors along the reference axes x,y,z (fig. i)

beam length, m

distributed applied loads in the x,y,z directions, respec-

tively, N/m

distributed applied moment about the x 3 axis (i.e., an applied
pitching moment), N-m/m

a quantity that has order of magnitude less than or equal to

third degree in the rotations

a generic point on the beam elastic axis

the distance along the deformed-beam elastic axis measured from

the beam root, m

sine ( )

the transformation matrix of direction cosines relating the

axes x3' Y3' z3 to x, y, z

time, sec

arbitrary times, sec

deflection of point P in the x direction, referred to as

axial deflection, m

axial deflection of point P due to longitudinal strain of the

elastic axis, a spatial quasi-coordinate defined as

u + (1/2) (v '2 + w'2)dx, m

deflection of point P in the y direction, referred to as

lead-lag deflection, m

V



W

x, y, z

x3' Y3' z3

B 0

_W

6_

t

8 2

K 0

deflection of point P in the z direction, referred to as

flap deflection, m

a set of Cartesian coordinates with origin at the beam root, the

x axis being along the undeformed beam, m (fig. i)

a set of Cartesian coordinates with origin at point P with x 3

remaining tangent to the elastic axis and y_ and z 3 along

principal axes for the cross section in the deformed state, m

a rotation (flap) of the body B about the unit vector - j; the

exact axis about which the rotation occurs is dependent on

the sequence of angular rotations, rad

angle with the x - y plane of the beam in the example

problem, rad

variational operator; also Dirac delta function

virtual work per unit length done by nonconservative applied

loads, N-m/m

vector of virtual rotations of the reference frame x3' Y3' z3

fixed in the beam cross section, rad

a rotation (lead-lag) of the body B about the unit vector k;

the exact axis about which the rotation occurs is dependent

on the sequence of rotations, rad

a rotation (pitch) of the body B about the unit vector i; the

axis about which the rotation occurs is dependent on the

sequence of rotations, rad

pretwist angle, rad

the third angle in the series lag-flap-pitch; it is the third

angle required to rotate body B to the final position after

first lag then flap rotations, tad

the third angle in the series flap-lag-pitch; it is the third

angle required to rotate body B to the final position after

first flap then lag rotations, rad

the k component of curvature of the beam in the example prob-

lem, m -I

rotation per-unit-length vector of the reference frame x3' Y3'

z3; the i component is the torsion (angle of twist per unit

length) and the j and k components are bending curvatures,

m-i

vi



angle of twist due to torsional shear strain, a spatial quasi-

socoordinate defined as <. dr - 0 , rad
1 t

angular velocity of the reference frame

Subscripts and Superscripts

lag-flap-pitch sequence of rotations

flap-lag-pitch sequence of rotations

lag-pitch-flap sequence of rotations

flap-pitch-lag sequence of rotations

pitch-lag-flap sequence of rotations

pitch-flap-lag sequence of rotations

_l_t( )

_l_r( )

_/_x( )

(vector) • i, j, k

(vector) • I, J, K

1

2

3

4

5

6

(')

( )+

()'

( )i,j,k

( )I,J,K

x3' Y3' z3' rad/sec
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ONTHENONLINEARDEFORMATIONGEOMETRYOFEULER-BERNOULLIBEAMS

DeweyH. Hodgesand Robert A. Ormiston
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and
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and

David A. Peters
Washington University

SUMMARY

Nonlinear expressions are developed to relate the orientation of the
deformed-beamcross section, torsion, local componentsof bending curvature,
angular velocity, and virtual rotation to deformation variables. These expres-
sions are developed in an exact manner in terms of a quasi-coordinate in the
space domain for the torsion variable. The entire formulation is independent
of the sequence of the three rotations used to describe the orientation of the
deformed-beamcross section. For more commoncases in the literature in which
one of the three rotation angles is used as the torsion variable, the result-
ing equations depend on the choice of the three angles. Differences in the
equations, however, are demonstrated to be in form only. The present deformed-
beamkinematic quantities are proven to be equivalent to those derived from
various rotation sequencesby identifying appropriate changes of variable
based on fundamental uniqueness properties of the deformed-beamgeometry.
This development helps to clarify the issues raised in the literature concern-
ing the choice of the angles. The torsion variable used herein is also shown
to be mathematically analogous to an axial deflection variable that has been
commonlyused in the literature. Both variables are quasi-coordinates in the
space domain and have been used in derivations based on Hamilton's principle,
despite lack of rigorous justification. Rigorous applicability of Hamilton's
principle to systems described by a class of quasi-coordinates that includes
these variables is formally established.

i. INTRODUCTION

i.i Background

To adequately model a helicopter blade, the deflections must be treated
as moderately large and the equations of motion will be nonlinear. Such equa-
tions are required for properly analyzing the stability and forced response of
helicopter rotor blades in hover and in forward flight. To derive such equa-
tions, it is necessary to first specify the geometry of the beamboth in its
undeformed state and in its deformed state at someparticular instant in time.
For typical beamtheories, this involves expressing the position of a generic



point P on the elastic axis, the orientation of a frame consisting of the

axes normal to and along principal axes for the cross section at P, and any

further deformations, such as warp of the cross section out of its nominal

plane, to adequately specify the location of every material point in the beam

(ref. i). In the discussion of kinematics that follows we will focus on the

variables used to describe the location of point P on the elastic axis and

the orientation of the reference axes attached to the beam cross section at P,

assuming that no deformation of the beam cross section occurs. This would, in

general, imply a total of six variables: three deflection variables for the

location of P and three angles I for the orientation of the reference axes

with origin at P with respect to a suitable space-fixed reference frame.

For an Euler-Bernoulli beam, however, the cross section is assumed to remain

normal to the beam elastic axis during deformation. Thus, two of the three

angles can be eliminated by expressing them in terms of derivatives of the

deflection variables. It is then necessary to express all the kinematical

quantities in terms of the four remaining variables.

It is clear that a material point can only occupy one position at a time.

The beam geometry, by which we refer collectively to the position of the

material points along the elastic axis and the orientation of the cross sec-

tions in terms of direction cosines for the reference axes at P, is then

unique at a specific time. When the beam geometry is specified, so is the

strain, the torsion (or angle of twist per unit length), and the components of

bending curvature along the principal axes of the cross section at P, since

these also are geometric quantities. Although the values of these quantities

are unique at a particular instant in time, the mathematical variables used in

defining the geometry are not unique. In reference 2, Reissner shows, for

example, that it is possible to formulate a large-deflection beam theory com-

pletely independent of the choice of deformation variables. These equations

are an extension of the Kirchhoff-Love equations (ref. i) and illustrate the

obvious fact that the geometric quantities describing the beam deformation

under a given load, although the expressions may look different for different

choices of variables, are determined by the loads alone. There are many possi-

bilities, for example, in the choice of angles used to relate the orientation

of the reference axes at P to a space-fixed Cartesian frame (fig. i). In

general, any change in orientation can be described by three successive rota-

tions about three distinct, well-defined axes. These sequential rotations can

either occur about space-fixed axes, or about axes that are fixed in an updated

reference frame resulting from a previous rotation. The angles themselves are

not unique, but values of the resulting direction cosines that define the

orientation are unique.

lie is possible to use variables other than angles to describe changes in

orientation such as Rodriguez parameters (ref. 2). In this paper, however,

we will restrict the discussion to the use of angles.
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Figure i.- Undeformed, pretwisted beam and reference Cartesian axes x, y, z.

1.2 Discussion of Previous Work

With the assumption that the beam cross section remains normal to the

elastic axis during deformation, the exact expressions describing the deformed

beam geometry have been developed and applied to a derivation of the equations

of motion for a helicopter blade (refs. 3-5). In reference 3, the exact direc-

tion cosines for the reference axes with origin at P were derived. These

direction cosines are invariant with the choice of angles used in describing

the orientation. The direction cosines constitute elements of a transformation

matrix [T] relating the reference axes with origin at P and a space-fixed

set of Cartesian axes, the x axis of which is along the undeformed beam

(fig. i).

In reference 4, the structural and inertial operators were derived,

through second-degree nonlinearity, for the rotating beam. The bending curva-

tures were developed in the appendix of reference 4. These expressions are

exact and independent of the choice of angles used to describe the orientation.

In reference 5, expressions for the aerodynamic loads are developed for the

rotating beam. To derive expressions for the aerodynamic loads one must make

use of components of each of the following vector quantities along the refer-

ence axes with origin at P: the relative velocity of point P with respect

to the fluid, the angular velocity of a rigid body B in which are fixed the

reference axes with origin at P, and the virtual rotation of B (fig. 2).

The first of these three items depends only on the [T] matrix, but the latter

two must be developed separately. Only approximate forms of these quantities

are given in reference 5 and the exact expressions, developed herein, have not

previously been published.

Torsion deformation in references 3-5 is described by use of a quasi-

coordinate in the space domain, the elastic component of the angle of twist.

The variable is referred to as a quasi-coordinate because it is related to
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Figure 2.- Deformed-beam geometry.

angles through integrals that cannot be evaluated in closed form. Hence, all

three angles, no matter how they are chosen, can be eliminated from the deri-

vation for an Euler-Bernoulli beam. Although the definition of the torsion

variable is mathematically explicit in references 3-5, it is never stated

therein that it is a quasi-coordinate. This may account for some of the dis-

cussions that have appeared in the literature (refs. 6-8).

To better understand these discussions it is helpful to consider a simple

approximation. Sometimes an elastic beam is approximated by a system of

spring-restrained rigid bodies, the simplest of which is a single rigid body,

hinged at a point corresponding to the beam root to provide three angular

degrees of freedom. Now, for a rigid-body system such as this, the arrangement

of hinges presents the analyst with a choice of infinitely many distinct physi-

cal spring arrangements -- each of which constitutes a distinct, well-defined

physical system. For example, in reference 3 differences in stability between

two of these systems are identified. They each have only two degrees of free-

dom: flap (out of the plane of rotation) and lead-lag (nominally in the plane

of rotation). The only difference between the two systems is the hinge

arrangement. By definition, lag-flap means that the flap hinge leads or lags

with the blade; flap-lag means that the lead-lag hinge flaps with the blade.

Thus, lead-lag motion is precisely inplane only for the lag-flap arrangement;

hence, the word nominally is used in the above definition. For small angles,

the equations are linear and the two systems have identical equations of



motion. Any degree of nonlinearity produced by moderately large angles will,
however, produce differences in the blade pitch orientation for the two sys-
tems for given flap and lead-lag deflections. These differences, although not
large, produce different dynamic behavior and stability for the two systems.
It is clear, however, that an elastic beamwith a particular set of end con-
straints is only one physical system and its kinematics, stability, and
dynamic behavior are not subject to the analyst's choice of angles used in the
derivation of equations that describe the system. While this may seemclear,
there has been considerable discussion and somemisunderstanding of this
issue in the literature (refs. 6-8).

The role of hinge arrangement in determining coupled flap-lag stability
of a rotating, centrally hinged, rigid-beam model of a helicopter rotor blade
in hover and in forward flight is further addressed in reference 6 where both
lag-flap and flap-lag systems are studied. The arrangement of the hinges is
shownto influence the stability boundaries for both hover and forward flight.
In reference 7 two different sequencesof rotations are used to describe the
orientation of the cross section of the deformed elastic beamand second-degree
nonlinear expressions are developed for torsion, the bending curvatures, and
the [T] matrix. These expressions are used in reference 8 to derive two sets
of equations of motion for a rotating, elastic-beam model of a helicopter blade
in hover and in forward flight. In the two sets of equations, the torsion
deformation is described by the appropriate angles of the two sets, which dif-
fer from each other and from the variable of references 3-5 as well. The
differences in the variables are not mentioned in references 7 and 8, and in
reference 8 the fact that the formulations must be equivalent is only conceded
to be an unproven possibility. The following conclusions are drawn in refer-
ences 6-8: (i) the transformation sequenceused in deriving the equations
influences the stability and dynamic behavior of an elastic beam (refs. 6, 8);
and (2) the work of references 3-5 is incorrect in somerespects (refs. 7, 8).

Becauseof the importance of the fundamental geometric relationships of
slender beamsto the nonlinear analysis of rotor blades, and because of the
apparent differences that exist between references 3-5 and references 6-8, a
detailed exposition of this subject has been undertaken in this report. The
influence of the choice of angles is thoroughly investigated in this report.
The fact that any of the hinged-beam approximations can be analyzed with any
choice of angles will be demonstrated. Although the hinge arrangement is cru-
cial to accurate analysis, the choice of angles used in modeling is immaterial
(ref. 9) as long as singularities, discussed in section 2, are avoided
(ref. i0). Since an elastic beam, unlike the rigid beamwith its manypossible
hinge arrangements, is a single physical system, we should not expect the
choice of angles to influence the outcome of the analysis at all. Otherwise
a completely intrinsic formulation like the Kirchhoff-Love equations (ref. i)
or their recent extension by Reissner (ref. 2) would be impossible. Finally,
the work in references 3-5, while essentially correct, does suffer from lack
of clarity in someareas and it is hoped that this report will clarify the
earlier work as well as the ensuing discussions in references 6-8. Part of
the difficulty in reconciling the results of other investigations with refer-
ences 3-5 stems from the nature of the torsion variable used therein. The



properties of this variable need to be clarified, especially with respect to
its use in conjunction with Hamilton's principle.

1.3 Procedure

In this report, the appropriate relations describing the geometry of the
deformed beamare rederived and expandedto include the componentsof angular
velocity and virtual rotation. The appropriate changes of variable are estab-
lished to prove that the two formulations in references 7 and 8 are equivalent
to each other and equivalent to the approximate form of the exact expressions
derived herein and in references 3-5. A thorough comparison with the results
of other work is undertaken along with a discussion of the geometric nature of
the different torsion variables in references 3-8. The consistent reductions
of the kinematical equations for infinite torsional rigidity and for the
hinged, rigid-beam approximations are also examined. Finally, the application
of Hamilton's principle to systems described by the torsion variable of refer-
ences 3-5 is rigorously established.

2. THELARGE-DEFLECTIONGEOMETRYOFANEULER-BERNOULLIBEAM

In this section the large-deflection geometry of an Euler-Bernoulli beam
is derived. For the purpose of discussing the geometry, we will not consider
warp. Without warp, cross sections remain plane and normal to the deformed-
beamelastic axis in an Euler-Bernoulli beam. Thus, the geometry is completely
determined by three deflections u, v, w along the x, y, and z axes (fig. 2)
and someappropriate measureof the elastic twist. Wemust then express all
other geometric quantities in terms of these four deformation variables. The
orientation of the reference axes with origin at P with respect to the
space-fixed axes is given by elements of the [T] matrix. Also, expressions for
the torsion and componentsof bending curvature, angular velocity, and vir-
tual rotations are developed.

Weconsider an initially straight beamsegmentwith the elastic axis
along the x axis, illustrated in figure I. In its undeformed state the beam
is pretwisted so that the principal axes of the cross section, denoted by Y3
and z3, are at an angle 0t(x ) with the y and z axes, respectively, and
0t(0 ) is denoted by 00. The cantilever root boundary condition is considered
here for the purpose of illustration. In principle, any set of boundary con-
ditions could be treated by slightly modifying the method that follows.

Whenthe beambends and twists to somedeformed configuration, as in
figure 2, the geometry can be completely described by the deflections u, v,
w of the point P on the elastic axis and by the direction cosines of the
reference axes x3, Y3, and z 3 where x 3 is tangent to the elastic axis of
the deformed beam. The matrix of direction cosines of x3' Y3' z3 with
respect to x, y, z constitutes a coordinate transformation matrix denoted
by [T] between the unit vectors i, j, k associated with the local reference
axes x3' Y3' z3 of the deformed beamand the unit vectors I, J, K asso-
ciated with the space-fixed axes x, y, z. The relationship is given by



= [T] (l)

When any two of the axes about which rotations occur have the possibility of

being coincident within the primary range of interest of the rotations, singu-

larities result. This is the disadvantage in using what are commonly known as

classical Euler angles (ref. i0) since the first and third rotations are about

the same axis when the second angle is zero. The remedy is to have the rota-

tions about axes that do not approach one another for rotations in the neigh-

borhood of zero since small deformations are a special case of interest for the

present problem. These modified angles, as used in this development, are also

sometimes called Euler angles in the literature (e.g., ref. ii). We assume

that the unit vectors i, J, k are fixed in a rigid body B and are initially

coincident with axes x, y, z. Rotations _, 8, and 0 of B occur about

k, -j, and i, respectively, but not necessarily in that order, so that i, j,

k are finally aligned with the x3' Y3' z3 axes. Therefore, the angular

displacement 0 rotates the beam cross section about what is, for _ = B = O,

the elastic axis; the angular displacement 8 rotates the beam cross section

out of what is, for _ = e = 0, the horizontal (x-y) plane; the angular dis-

placement _ rotates the beam cross section in what is, for 8 = 0 = O, the

horizontal plane. The first rotation always occurs about either x, y, or z.

The orientation of the exact axis about which the second rotation occurs is

dependent on the axis and magnitude of the first rotation. The third rotation

always occurs about either x3' Y3' or z 3. In the text of this report, only

two of the six possible sequences of angles will be considered: _I' El' 01'

and 82' _2' 02" The subscripts are added to emphasi_e the fact that, for a

given orientation of x3, Y3, z3 with respect to x, y, z, _2 _ _I' 82 _ 81'

and 02 _ 01 . Since it is clear that the choice of angles will not change the

outcome of an analysis, it is natural to inquire at this stage why it is neces-

sary to consider two different sequences. It is one purpose of this report to

study the outcome of expressing the deformation kinematics in terms of the two

sequences and to address the issues listed in section 1.2.

The axes of rotation for the _i' Bl' 01 sequence may be described by a

rotation _i about the z axis resulting in a new set of axes x_, y_, z 1

followed by a rotation 81 about the -y_ axis resulting in a new set of I'

axes x_, y_, z_, finally followed by a rotation 81 about the x_ axis

resulting in the x3' Y3' z3 axes (see fig. 3). The axes of rotation for the

82' _2' 02 sequence may be described by a rotation 82 about the -y axis

resulting in a new set of axes x_, y_, z_, followed by a rotation _2 about

the z_ axis resulting in a new set of axes x_, y_, z_, finally followed by

rotation 02 about the x_ axis resulting in the x3' Y3' z3 axes (see

fig. 4). The final set of axes must be the same regardless of the sequence

of rotations. The matrix [T] may be formulated in terms of any set of three

angles that will rotate the axes x, y, z to x3' Y3' z3" The discussion

here is limited to the sequences _I' Bl, 01 and _2' _2' 02" However, all

six possible sequences of the angles _, 6, and _, as defined above, are used

to develop the geometry in the appendix of this report. The conclusions hold
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for any set of angles, regardless of definition, as long as they will describe

the orientation of axes x3' Y3' z3"

The geometry of the deformed state is now developed. The position vector

describing any point on the deformed-beam elastic axis can be written as

(see fig. 2)

r = (x + u)l + vJ + wK (2)

The unit vector tangent to the elastic axis of the deformed beam is

_r _ (x + u)+1 + v+J + w+_ (3)
_r

where r is the curvilinear distance coordinate along the deformed-beam elas-

tic axis and ( )+ = _/Sr(). Since the cross section remains normal to the

elastic axis during deformation

_r

8r - i = TIll + TI2J + TI3K (4)

where Tij is the element on the ith row and in the jth column of [T].
Thus

TII = (x + u) +

= v +
TI2

=w +
T1 3

(5)

no matter what angles have been used to express IT]. Since the IT] matrix is

orthonormal

T112 + T22 + T23 = 1 (6)

and a relationship between x and r is easily obtained from equations (5)

and (6)

(x + u) + = /i - v +2 - w +2 (7)

or

r' = /(I + u') 2 + v '2 + w '2 (8)

where ( )' = _/$x(). The preceding equations must be combined with explicit

expressions for the elements of [T] to completely specify the geometry of the

deformed beam.



Explicit expressions for the [T] matrix, components of the angular veloc-

ity and virtual rotation vectors, the torsion and components of bending curva-

ture are now developed. The _I, BI, 91 sequence is chosen arbitrarily for
this task. The [T] matrix can be determined from the successive transforma-

tions relating

[T] =

x3' Y3' z3

CB c
I _I

-c_iS_lS81

to x, y, z using figure 3:

cB s s
1 _1 B1

C lC@ - s s s1 _I B1 @I CBlS@l

-c + s -c - s c c
ISBlCel Sgl _I _ISel _ISBlCgl B 1 91

(9)

where c(f$ : cos(), s( ) = sin(), and [T] -I = [T] T. The angular velocity
is taken o figure 3:

= - J - s I) + 01 i

= wii + wjj + Wkk (lO)

where (') = a/_t(). The components of m along i, j, k, determined from
equations (i), (9), and (i0), are

wi _I + E1
• = sBI

w. = -_i c + _ s8
] 81 IC_l

= c + _is@Wk _iCBl @I 1

(ii)

The virtual rotation vector 6_ can be expressed by replacement of (') with
6( ) in equations (I0) and (ii) (ref. i0). Thus

: - J - s I) + 6_ii6@ _i K 88i(ci

= 6_ii + 6_jj + 6_kk (12)

where

6_i = 681 + SBl_l I

_$j -Cel6_ i + cBis@16_ 1/
5_ k CBlCgl_ i + sg16B 1

(13)

i0



The virtual rotations are needed to express the virtual work of applied exter-

nal moments (such as the aerodynamic pitching moment). The torsion (or angle

of twist per unit length) and the bending curvatures may be deduced with the

use of Kirchhoff's kinetic analog (ref. i) by replacing (') with ( )+ in

equation (i0)

+ +(c iJ I) + @+iK = _i K - B - S_l

= <i i + <jj + <k k
(14)

where <i, the torsion, is

+ +

Ki = @i + EIsBI (15)

and the components of bending curvature in the j and k

+ +

Kj + I

= -61c@i _ic_is@l

+ +

<k = _ICBI c@l + BlS@l

directions are

(16)

We now define an angle of elastic twist _ so that

(8 + _)+ = K.
t l

(17)

where 8_=_ O_x +. We note that @t and # can be considered together because

each occurs about the beam elastic axis. This angle of elastic twist is dis-

cussed in references 12-15 and used in references 3-5 as the torsion variable.

From equations (5) and (9) we find that

sB1 = w+ (18)

Then, we differentiate equation (5b) and make use of equations (5), (7), (9),

and (18) yielding

4-+ ++4-+
+ v v ww
_I = + (19)

/i - v+2 - w +2 (i - w+2)/l - v +2 - w +2

Substitution of e_uations (18) and (19) into equations (15) and (17) yields an

expression for @_ in terms of variables v, w, and _ which does not depend

on any of the angles ¢I' BI' el:

01+ = (8 t + q_)+
/i - v +2 - w +2

v++ 1 - w+27
+ (2O)

ii



or

w+

/I - v +2 - w +2

v+w+w++h
v++ + _ _-_-_]dr (21)

if 91(0) = 9t(O) = 90 and ¢(0) = 0.

The IT] matrix may now be expressed in terms of v, w, and _ with no

dependence on _i 81 and _ We make use of equations (5) (7) and (9)
' ' i" ' '

obtaining

[T] =

/i - v+2 - w+2

-v+ce: w+s9:/f v+2 w+2

v+

c9 /i- v +2 _w+2 _ v+w+s e

/i - w+2

v+s 9 -w+c 9 _-v +2-w +2 -s 9 /l-v +2-w +2-v+w+c 9
1 1 1

/i - ,,,+2 ,/1 - w+2
co 1_K-i-7_w+2

t

(22)

where 91 is given by equation (21). This result for [T] was first obtained

in reference 3 in a different manner. The components of the angular velocity

vector, the virtual rotation vector, and the rotation per-unit-length vector

can now be expressed in terms of v, w, and ¢. In doing this we make use of

equations (5), (7), (9), (11), (13), (15), (16), and (17):

v+w+w+ )
=6 + w+ +++ --

i 1 A - v+2 - w+2 i- w+2

J

-0+ce so /1 - w+2
I + ++ __

A-w+2 iTw+2/ /1-v +2-w +2

-,:,+s9 /. v+w+_+_ c9 /l - _+2I + i

+ kv -I- '/l- w+2 i- 7511¢l- v+2_ w+2_k =

(23)
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6_i = aSl + w+ v+ +
/1- v+2 - _+2 i - w+27

_ _+
Co I

/i - w+2

sol'w+

/i - w+2

+ (_v+ v+w+_w+_ soi/l - w+2+7 :

6_k = + (_V + V+W+@W+_ COI/I - W+2+77 w+--T/J1 : v-727]72

(24)

K i = (9 t + ¢)+

]
-W++C@ 1 + (Vq__ + V+W+Wq-+_ SO_1/I - W +2
/i- w+2 _-T/¢iZv+2_w+2

K k --

W++S 81 I V--+W++\__w _ C8 I/I -- W +2

+ Iv+++
/i -- W +2 i -- W+2/ _I -- V +2 -- W +2

(25)

The variables 8. and 69 are obtained by differentiation and variation of

91 in equation 121). 1Equations (21) through (25) provide a complete and

exact description of the deformed-beam geometry. These equations are indepen-

dent of _i' BI, and 91 since 91 is expressed in terms of v, w, and ¢.

To illustrate the uniqueness of the geometry we present the development

again with a different sequence of rotations B2' _2' 92" We make use of

equations (i) and (5), which do not depend on the sequence of rotations. The

[T] matrix can be determined from the successive transformation relating

xB' Y3' z3 to x, y, z using figure 4.

S

c_2cB 2 s_2 c_ 2 82

-c - - c o s s_[T] = _2C02S_2 S_2S82 c02c_2 So2C_2 2 _2 _2

-S82C82 + S o - +2S_2C_2 S02C_ 2 C_2C02 S_2S02S_2

(26)

The angular velocity vector is, from figure 4

= -B2 J + _2(cB2 K - sB21) + 02 i
(27)

13



the componentsof which are

i = - 2

cJ. =-_2 c e + _2s
-] @2 _2 92

= +
w k _2e02 62s@2c_2

The virtual rotation components are

8_i = 6@ 2 - s 28_ 2

= 8_ 2 + s@28[ 287j -ce2c2

67k = c 8E2 + 6B 2
82 sO2cg2

The torsion is

+ +

<i = @2 - _2s_2

and the bending curvatures are

_. = -_2co c + _2s82] 2 _2

+ + 6_s02c _<k = _2c82

Substitution of equation (17) into equation (30) yields an expression for

+

e2 = (@t + %)+ + if+s( 2

Equations (5) and (26) lead to

s = V +

_2

+ w ++ v+w+v ++

82 = +
/1 - v +2 - w"1-2 (1 - v+2)/1 - v +2 - w+2

Substitution of equations (33) into equation (32) yields a relationship

between @2 and v, w, and

(28)

(29)

(30)

(31)

(32)

(33)

14



+ (w++v+w+v++_+ = + ¢)+ + v + 1 - v+2/ (34)e2 (°t /1 - v+2 - w+2

or

ir (w_ v+_+v_
v +

82 = et + ¢ + /1 v +2 w +2 + 1 - v +2] dr (35)

0

where 02(0) = 0t(0) = 00 and #(0) = 0. Equations (5), (26), and (28)

through (31) can be used to express the exact deformed-beam geometry in terms

of v, w, and ¢. The IT] matrix is

[T] =

/I - v+2 - w+2

-v+c82/1 - v+2 _ w+2 _ W+Se2

/1 - v+2 ee2_

v +

/i - v+2 w+2
v+s82 - -W+Co2

-S /i- v+2

/i - v +2 e2

w+

se2/1 - v+2 _ w+2 _ v+w+ce2

/i - v +2

c92/i- v +2 _w+2 + v+w+s92

/i - v +2

(36)

The components of the angular velocity vector, the virtual rotation vector,

and the rotation per-unit-length vector can now be expressed in terms of

v, w, and ¢. In doing this we make use of equations (5), (7), (19), (26),

and (28) through (31):

v+ _++ l-v+2}wi = e2 - /i - v +2 - w +2

w v+w+v+ _ c92/1 - v+2_J=- "++ i 7v+--e/_-vTi]w+2+
O+s 0

2

/i - v+2

v+w% + _ se2/l - v+2
mk= _+ + i- v+---2/_i - v-_2 f w%2

v+co2

+

/I - v +2

(37)
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v+ (_ v+w+_v+_6,i = _e2 - w++ 7 - v-_//I - v+2 - w+2

V+__W+6V+_ S82V/l - V+2
6_k = _w+ + i - v+2/ /i i v--+2 w-+2 +

_v+c
0
2

_i - v +2

(38)

_ = (8 + _)+
i t

c

w v+w+v++_8_= _ ++ + -

J 1 - v+2/ /i - v +2 - w +2

_<k = ( w++ v+w+v++_ s82v/1 - v+2+ 7 - v-_/a - v-7__ $$_
+

v++s 8
2

+

_i - v+2

v++c82

/i - v +2

(39)

where 02 and _0^ may be obtained directly from equation (35). Equations (36)

wrltten in terms of 82 defined in equation (35), appear to bethrough (39),

different from equations (22) through (25) written in terms of 81 defined in

equation (21). It is possible to demonstrate equivalence of the two sets of

equations by simply solving each of equations (21) and (35) for _ and

equating the expressions for _. The following first integral is obtained:

v+w+ )82 = 81 + tan-I /i - v+2 - w +2
(40)

so that

s 8
2

c 8 =
2

S O _1 - V+2 - W+2 +1 V+W+Cs]

F/i' _ V+2 v/l - W4-2

C 0 /i - V +2 - W+2 - V+W+Sol
l

/i - v+2 /i - w+2

(41)

These relations were also obtained in reference 15. Equations (40) and (41)

can also be derived by equating the expressions for T23 in equations (22)

and (36). Now, by substitution of equations (41) into equations (36)

16



through (39), the results can be shown to reduce identically to equations (22)

through (25). Thus, the sequence of rotations used in the derivation is

proven to be immaterial and the two sets of equations are seen to be related by

a simple change of variable. The fact is further illustrated in the appendix,

in which all six possible sequences are examined and shown to be equivalent.

3. COMPARISON WITH OTHER WORK

The results of the development in section 2, except for slight differences

in notation, are identical to the results in references 3-5. Several discus-

sions of the material in references 3-5 appear in the literature and it is the

purpose of this section to examine these discussions.

In references 6-8, the [T] matrix, the torsion, and the components of

bending curvature are obtained for both the _I, BI, el sequence and the

B2' _2' 82 sequence of rotations. The expressions therein are approximated

to second-degree accuracy in the deflections u, v, w and 81 or 82 . The

authors denote @i and e 2 by the same symbol even though @i and e 2 are

different angles. After recognizing this slight inconsistency in notation,

however, it is quite easy to verify that the geometric quantities expressed

therein are equivalent to the two formulations in the preceding section.

Indeed, the development in the preceding section shows that the sequence of

rotations used in describing the orientation of the local principal axes of

the beam cross section is arbitrary. Thus the sequence of transformations

cannot influence the outcome of a stability or response analysis. The equa-

tions appear to be different but a change of variable can always be found that

will transform the equations derived based on one sequence to that of any

other. The application of this fundamental idea to the rigid-beam approxima-

tion of an elastic beam will be discussed in section 6.

Let us now examine the question of whether the sequence of transformations

used in an elastic-beam analysis can affect the results of the analysis as

discussed in reference 6. This involves demonstrating that the two develop-

ments in references 6-8 are actually equivalent to each other and to that of

references 3-5 and that the IT] matrix and kinematic quantities developed in

references 3-5, despite the apparent differences with the results of refer-

ences 6-8, are nonetheless correct. It is convenient for comparison with

references 6-8 to approximate the geometric quantities obtained in section 2

to second order in bending and torsion deflections.

Let us consider the case with @t = 0 and v+' w+' @I' e2 and ¢
O(g) so that s 2 << i. Equation (8) shows that

of

r '2 = (i + u') 2 + v '2 + w '2 = i + 2e (42)

where e is the component of longitudinal strain of the elastic axis from

Green's strain tensor. In engineering beam theory, e is neglected with

respect to unity. Here we assume e = O(e 2) so that r' = 1 + O(_ 2) and

u' = O(g2); thus, derivatives with respect to r may be replaced by

17



derivatives with respect to x. For comparison we write only the T23 and T32
elements of the IT] matrix, the torsion, and the bending curvatures of the
_i, BI, Ol formulation:

T23 = OI + O(c3)

T32 = -e I - v'w' + O(e3)

K. = ' + V"W Ti 01 + O(s3)

<. = -w" + elv" + o(_ 3)
3

= w" + O(E 3)rk v" + 61

(43)

where equations (21), (22), and (25) have been used.

formulation these quantities are

T23 = O2 - v'w' + O(E 3)

T32 = -92 + O(e 3)

K = _ -- VSW I_i @2 + O(e3)

<. = -w" + e2v" + o(s 3)J

<k = v" + e2w" + O(e 3)

For the 62' _2' @2

(44)

where equations (35), (36), and (39) have been used. These quantities are

identical to the corresponding expressions obtained in references 7 and 8.

Equation (40) yields, to second order, the following relationship between

e I and @2:

02 = @I + V'W' + 0(£ 3) (45)

which, upon substitution into equations (44), produces equations (43) identi-

cally. These expressions, which form the basis for deriving the equations of

motion, are thus equivalent. Equation (45) can be thought of as a change of

variable. If it is applied to the equations of motion based on the B2' _2' 02
sequence (flap-lag-pitch) derived in reference 8, the result will be identi-

cally the other set of equations of motion in reference 8 that are based on

the _i' BI' el sequence (lag-flap-pitch).

Equations (43) and (44) both reduce to the same expressions when the

elastic angle of twist is introduced, from equations (20) and (21)

18



or

v vW" /' + v"w' + 0(_ 3) = 02¢' = _1 - v + 0(_ 3)

/fox fox= 01 + v"w'dx + O(e 3) = 6)2 - v'w"dx + O(a 3)

(46)

f0 X
01 = ¢ - v"w'dx + O(a 3)

0 2 = _ + v'w"dx + O(c 3)
a

(47)

Now equations (43) and (44) become

_0x
T23 = 4) - v"w'dx + O(e 3)

$

X

T32 = -# - f0 v'w"dx + O(a 3)

<. = ¢, + o(c 3)
1

K. = -w" + Cv" + o(_ 3)
3

<k = v" + Cw" + O(e 3)

(48)

Equations (47) relate ¢, 01, and 02 and may also be regarded as changes of

variable relating the angles 01 and 02 to the elastic twist angle ¢. When

these changes of variable are applied to the development in reference 8, the

two sets of equations derived therein based on _I' 81, 01 and based on

B2' _2, 02 (when specialized to hovering flight) are found to be equivalent to

the set of equations found in references 3-5 (which considered only the hover-

ing flight case). Because of the nature of ¢, this change of variable is

most easily applied to the energy and virtual work expressions, however, not

directly to the partial differential equations, as shown in section 5. The

outcome of the analysis does not depend on the sequence of rotations and the

work of references 3-5 stands as correct.

Other authors (refs. 16 and 17) have had difficulty reconciling their

work with references 3-5. In reference 16 it is stated that the results of

references 3-5 are in error because of an incorrect expression for torsion, a

comment similar to the conclusions of references 6-8. The [T] matrix in

references 3-5 is stated to be incorrect in references 16 and 17 because the

pretwist angle is grouped with the torsion variable rather than being imposed

before the elastic deformation. Furthermore, it is stated in reference 16

19



that the quantity 9_ must appear in [T]. The pretwist Ot can be grouped

with el, e2, and ¢ in the present formulation because all of these rotations

occur about the same axis. 2 The development in section 2 of this report is

exact for an Euler-Bernoulli beam, and e I terms do not (and cannot, because

of dimensional reasons) appear in [T]. In contrast to references 16 and 17,

there is no difference in the final form of the [T] matrix that results from

interchanging the order of pretwist and elastic deformations (see eq. (17)).

In both references 16 and 17, the two sets of axes that the IT] matrix relates

are not the same two sets of axes that the [T] matrix in this report (and in

refs. 3-5) relates. In references 16 and 17, the [T] matrix relates the local

beam cross-section principal axes after deformation to the local beam cross-

section principal axes before deformation and not to the x, y, z axes used

here. Thus, for et # 0 a direct comparison of the [T] matrix and other

geometric quantities in references 16 and 17 with those of references 3-5 and

the present report is not possible.

In reference 12, two of the present authors established that the lateral

buckling load for uniform, slender cantilever beams was identical for two sets

of equations -- one in terms of eI and the other in terms of ¢. These
equations were different in appearance, yet they were equivalent and yielded

the identical buckling load. The development in reference 12 in terms of ¢

proceeds from the Kirchhoff-Love equations (ref. i) which in no way depend on

the sequence of rotations used to describe the cross-section orientation.

Careful examination of the different approaches noted in reference 12 illus-

trates that it is important to understand that the two geometric angles,

denoted by 81 and e2 in this report, and the elastic angle of twist ¢ are,
in fact, different quantities. Some of the confusion about the influence of

different sequences of rotations evident in references 6-8 apparently stems

from their use of the same symbol for the three different quantities @I' e2'
and ¢.

In reference 18, nonlinear equations of motion for an Euler-Bernoulli

beam are derived for the purpose of investigating stability of the beam with

applied loading. Classical Euler angles are used to describe the cross-
section orientation. The three axes about which rotations occur for infini-

tesimal angles are not mutually orthogonal for classical Euler angles, for

which two rotations occur about the axis that lies along what is nominally the

beam elastic axis. Thus, the torsion variable T is defined in reference 18

as the sum of the first and third Euler angles. The torsion <i and the I

component of the virtual rotation vector 6_i = 6_ • I
order in reference 18 as

are given to second

<. = _, + i 'w" 3)i -f (v"w' - v ) + o(E

Ji
_I = 6_ - _ (_v'w' - v'_w') + o(E 3)

(49)

2This is not true of the other four sequences treated in the appendix,

however. There, angular displacements 83, 8_, 05 and 86 do not rotate the
beam cross section about the deformed-beam elastic axis.
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These quantities, in terms of 81 and 82 , are, from equations (12), (25),

and (40)

= ' + V"W' + O(e 3) ' 'W"
<i @I = @2 - V + O(e 3)

6_I = 681 + v'6w' + 0(63 ) = 602 - W'6V' + O(s 3)

} (50)

Equations (49) and (50) can be shown to be equivalent to second order by use

of the following changes of variable:

VvW I VtW 1

= 81 + _ + O(_3) = 82 2 + O(e 3) (51)

Thus, the equations of motion derived with the aid of classical Euler angles

in reference 18 can be shown to be equivalent to those derived with the rota-

tions defined in this report. To formulate the complete, exact geometry using

classical Euler angles and the elastic angle of twist, _ is quite difficult,

however, and may not even be possible because singularities appear in the

integrals when deformations are small instead of large as in the present for-

mulation. Also, the angles used in this report, unlike classical Euler angles,

bear a strong resemblance to the geometric change in orientation during

moderate deformations.

The results of this section show that the expressions for deformed-beam

geometry developed in section 2 and in references 3-5 are equivalent to a

variety of formulations found in the literature. The results of references 3-5

are also confirmed. The nature of the torsion variable _ and how a formula-

tion in terms of _ differs from one in terms of 81 or @2 has not been
treated in the literature and will be addressed below.

4. NATURE OF THE TORSION VARIABLES @I' 82' AND

In this section we will examine the nature of the torsion variables

81, 82, and _. The kinematical relationships that define these variables are

used to establish differences among them. An example problem is introduced to

aid in illustrating these differences. The geometric relationship between

e I and 82 is examined by projecting the local cross-section principal axes on

the yz plane. Finally, the elastic twist _ is shown to be a quasi-

coordinate (ref. i0) in the space domain because it is related to physical

angles through integrals, and its mathematical analogy with the axial deflec-

tion of a beam due to longitudinal strain is established.

4.1 Kinematical Differences

The elastic angle of twist # is defined to be the elastic component of

the integral of the torsion K i. Thus, from equation (17)
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_0r¢ = <. dr- O1 t

The elastic torsion momentis then simply GJ¢+ (ref. 4).

(52)

The angle # may be thought of as the beam twisting caused by a distrib-

uted, externally applied torsion moment acting about the local x 3 axis. The

angle _ does not completely define the orientation of the reference axes at

point P even when _I and B 1 (or v + and w +) are known at P. In addition, e l

(or 92 ) must be calculated to obtainthe complete description of the geometry

of a deformed beam. This requires knowledge of _I and B 1 for all x inboard

of P. Both 91 and 92 occur as rotations about x3, the deformed-beam elas-

tic axis (i.e., the i unit vector). By definition, 81 and e 2 are the third

angles in the two different sequences _I' 61' 91' and B2, $2' 92' respec-

tively, as described in section 2. Since the final orientation is fixed, the

angles e l and 62 must differ. The fact that the elastic twist is not, in

general, equal to either of the angles e l and e 2 is simply because of the

kinematic effects of combined bending of the beam in two directions, v and w.

If the bending deflections and elastic twist angle are known, e I and e 2 can

be written according to equations (21) and (35).

el=et+¢- w+ (v++ +
/I - v +2 - w +2

r

f v+ (92 = 9 t +¢ + w ++

• /i - v +2 - w +2
0

+

v+W+w++_ dr

1 - w+2/

v+w+v++\

i-_) dr

(53)

They can be approximated quite well by the simpler expressions:

_0 X
91 = @t + ¢ - v"w'dx + O(e 3)

ix9 2 = 0 t + ¢ + v'w"dx + O(s 3)

(54)

Thus, rotations about the beam elastic axis (geometrically like elastic tor-

sion rotations) may be produced by combined bending deflections alone, even

without elastic twist ¢ or pretwist O t.

4.2 Example Problem

The following example problem is included to further confirm and illus-

trate the differences between 91 and 02 as well as to demonstrate the use of
the geometric relations developed in section 2. Consider a beam that is first
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inclined by an angle B o from the x-y plane and then bent into a circular

arc, without torsion or elongation, in the plane of its elastic axis and major

principal axis as shown in figures 5 and 6. Thus

K i = 0 I

JKj = 0

K k = -K 0 = constant

(55)

The equations for the space curve of the beam elastic axis are, from the geom-

etry of figures 5 and 6,

cos B 0 sin(K0r ) 1 - COS(K0r) sin B0 sin(K0r)

u = - r ; v = ; w = (56)
K 0 -K 0 K 0

J

J

i

K k Kk

i,j

J

Figure 5.- Deformed beam for example problem.
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PROJECTION OF I

Y'J /

/ DEFORMED-BEAM

____ ELASTIC AXIS
I

"-X 3, i

1/_ 0

Figure 6.- View of deformed-beam elastic axis in the plane determined by

i and j (view AA from fig. 5).

The matrix of direction cosines at any location is quite easily obtained from

figures 5 and 6

{ilFc°s  °r c°s-Sin  °r = Isin(<0r)cos B 0 cos(<0r)

L -sin B0 0

cos0rsinIIi}sin(N0r)sin B

cos B0

(57)
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Wewish to show that given u, v, w and _ for a beam, the equations of
section 2 will provide an exact description for the deformed-beamgeometry.
Since Ki is zero then _ = 0. The geometric angle 81 can be calculated
directly from substitution of equations (56) into equation (21) yielding

81 = tan-l[sin(K0r)tan B0] (58)

Substitution of equations (58) and (56) into equation (22) for [T] yields

cos(K0r)cos B0 -sin(K0r) cos(K0r)sin 611
[T] = Isin(K0r)cos B0 cos(K0r) sin(K0r)sin B (59)

I
L -sin 60 0 cos B0

which is identical to the matrix of direction cosines defining the example

deformed beam in equation (57). It can be verified by substitution of equa-

tions (56) and (58) into the bending curvature formulas, equations (25), that

the exact relations defining the problem in equations (55) are recovered.

Thus the formulas of section 2 provide means of exactly determining the orien-

tation of the deformed-beam cross section when the elastic bending and elastic

torsion deflections are specified.

The same results for the transformation matrix and bending curvatures are

obtained if one uses the expressions derived from the B2, _2' 82 rotation
sequence, equations (35), (36), and (39). Proceeding as above but starting

with equation (35) we find

82 = o (60)

and from equation (36)

--COS(K0r)cos $0 -sin(K0r) c°s(<0r)sin BII
[T] = sin(K0r)c°s $0 cos(K0r) sin(K0r)sin B (61)

L -sin B0 0 cos B0

The transformation matrix is the same as obtained in equation (59) and thus

again duplicates the example problem transformation matrix given in equa-

tion (57). The fact that el # 82 should clearly indicate that the differ-

ences between 81 and 8 2 cannot be ignored. If O 1 and 8^ were treated as
the same angle it would not be possible to correctly describe the geometry of

the example problem in terms of both O1 and 82 .

4.3 Geometric Relationship Between 81 and 02

It is helpful to visualize 01 and 82 for the general case of coupled
bending deflections. This may be accomplished by considering the local
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o_1 _01

°_2 _- _2

y,J

Figure 7.- Projection of the local

cross-section principal axes on the

y-z plane.

T331(

"P Ip

T32 J T22 J

Figure 8.- The projection of unit vec-

tors j and k on the y-z plane.

cross-section principal axes pro-

jected on the y-z plane. In fig-

ure 7 the projection of the Y3 and
z 3 axes (the unit vectors j and k)

are shown in the y-z plane (the

plane containing unit vectors J and

K). The beam cross section appears

skewed because it is not in the plane
of the 3 and K unit vectors. The

projections of j and k, denoted by

jp and kp, are given by

= T2_J + T23K l

J (62)

kp = T32J + T3_

By inspection from figure 8

sin _I =

sin _2 =

T2 B

(63)

Expressions for the matrix components

T23 and T32 in terms of 01 or 82
can be found in equations (22)

or (36), respectively

= /i - w+2
T23 SOl

= _l - v+2
T32 -s82

(64)

Combining equations (63) and (64) and dropping higher-order terms, we find
that

ml = 01 + 0(c3)[ _

!c_2 = o 2 + 0(_ 3)

(65)

and, according to equation (45)

0 2 - 0 1 = V'W' + O(E 3) (66)
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These results show that for small angles, 01 and 02 are essentially the kine-

matic rotations of the j and k axes, respectively, about the i axis. The

fact that they are not, in general, equal is because the j-k plane does not

remain parallel to the J-K plane.

Returning to figure 5, the view of the beam in the direction of the I

axis provides a clear illustration of the kinematic rotation of the beam. The

orientation of the projections of the j and k axes in figure 5 is consistent

with the geometric interpretation of 01 and 02 in equations (65) and (66) and

with the example calculations showing that 01 m -v'w' and 02 = 0. These

kinematic rotations, devoid of elastic twist, were pre_iously identified in

reference 3 where their effect on the blade pitch angle was noted. Hence, the

term "kinematic pitch rotation" was used to describe these effects.

4.4 Mathematical Analogy of the Quasi-Coordinates _ and u e

It is well known that even in the absence of longitudinal strain of the

elastic axis, there may be significant nonzero axial deflection of a beam in

bending. The above calculations show that even in the absence of torsional

(shear) strain, there may be some nonzero pitch rotation of the cross section

of a bent beam. To examine this analogy in detail we must first develop the

appropriate relations concerning axial deflection. The longitudinal strain of

the elastic axis may be explicitly determined from the relationship of x and

r given in equation (42). Thus

U'2 _ W'2e = u' +7+ +-_- (67)

We now let u = u e + ub where u b is a kinematic axial deflection due to

bending only and u e is the axial deflection due to longitudinal strain of

the elastic axis. The strain becomes

(ue + 2
' + _ + + v '2 w,2e = u e 2 --_- + 7 (68)

' = 0. ThusThe strain must vanish when u e

,2u_+7 + + w...w____2 = 0 (69)

or

= /i - v '2 - w '2 - i (70)

The kinematic axial deflection, sometimes called foreshortening (refs. 19-21),

is then given by
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x

Ub = _0 /i - v '2 - w '2 dx - x

i (V,2 + W,2) + O(_4 )
2

(71)

Thus

x
ue = u + x - _ - V '2 - w '2 dx

iLx= U + _ (V '2 + w'2)dx + O(_ 4) (72)

Comparison of equations (72) and (46) reveals that ue and ¢ are mathematical

analogs. The deflection ue is devoid of kinematic shortening due to bending.

The elastic twist ¢ is devoid of kinematic pitch rotation due to _ending. In

the time domain, quasi-coordinates (ref. I0) are usually based on integrals of

either components of velocity or angular velocity. By Kirchhoff's kinetic

analog (ref. i) the angular velocity components carry over to bending curva-

ture and torsion relations while the velocity component along the elastic axis

can be shown to correspond to a longitudinal strain approximately equal to e.

To obtain the latter correspondence, the velocity of point P must be written

subject to the constraint that the velocity vector is tangent to the beam

elastic axis. The component of strain from the analog is the difference of

the velocities, for (') = ( )+, with and without elongation of the elastic

axis. Hence, both ue and ¢ are denoted as quasi-coordinates in the space
domain because they are related to the physical displacement u and angles

8 1 and 8 2 through integrals and because their derivatives have velocity and

angular velocity components as kinetic analogs.

5. QUASI-COORDINATES IN THE SPACE DOMAIN AND

HAMILTON'S PRINCIPLE

The angle of elastic twist ¢ has been shown in section 4 to be a quasi-

coordinate in the space domain similar to the elastic component of axial

deflection ue. Although several derivations appear in the literature, making
use of at least one of these variables (refs. 4-6, 8 and 19-21), it is well

known that the standard form of Lagrange's equations (and thus Hamilton's

principle) is not adequate when quasi-coordinates in the time domain are used

(e.g., see ref. i0). It is natural to ask if there are similar obstacles when

the above quasi-coordinates are used in the standard form of Hamilton's

principle. To answer this question we will consider both a general development

and a simple example derivation.
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5.1 General Development

Wewill first write symbolically the standard extended form of Hamilton's
principle for nonconservative systems using u, v, w, and 81. For simplicity,
we will consider only a linearized stability analysis so that time dependence
is factored out of every term. Wethen will rigorously take the variation.
The change of variable will be madeto variables Ue, v, w, and _ after the
variation. The resulting expression, if there are no obstacles, should corre-
spond identically to the expression obtained by starting the formulation in
terms of Ue, v, w, and _ and then taking the variation.

The standard extended form of Hamilton's principle for an unpretwisted,
nonwarping Euler-Bernoulli beamwith variables u, v, w, and 81 is given by

t2 L

_ _t L H(u, u', _ v, v' v" _, w w' w" w_, , , , , ' ' I' 81" _ )amdtl
]

+ _W dx dt = 0 (73)

where H is the kinetic energy minus the potential energy and 6W_ is the

virtual work of the nonconservative aerodynamic forces. To simplify the fol-

lowing development, equation (73) is written for a linearized stability analy-

sis, with time dependence factored out of every term or a static analysis

without time dependence. The variation of H when expanded yields

L

[ _(__7_6u + _H 6u' + _H _H _v' + 8H, 6v" 3H 3H _w' + 3H 6w"_u-_ _v _v + _v--T _ + _w 6w + _w--V _-_
I
0

' i) --+ _ 661 + _1 _81 + Lx6U + Ly6V + Lz_W + Nx 6_ dx 0 (74)

where the virtual work has been expressed in terms of the generalized applied

loads and '_i = _I + w'6v' to second order. The forces are resolved along

the x, y, z axes, respectively, and the pitching moment acts about the x 3
axis. We now make the change of variable that transforms equation (74) to a

different expression which involves u e and _. The relationships between

u, 81, and Ue, _ are, to second order, from equations (46) and (72)

Ue _ i _0 (v' 2 + w,2)dxu = 2

X

81 _ - f v"w'dx
"0

(75)
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Differentiation of equations (75) yields

v,2
U ! v= Ue 2

w,2

v V-W vel =( _ -

! V y V vv _ W ! W" _ TWe now consider H = H(u e, u e, v, , w, , _, _ ) and note that

3H 6u = 3H _Ue _H _u ' 3H 6u' _ _u_ 3H
B-_ _u e 3u du = 3u e ' 3u---r = _u_ 3u' _u' = 3u---_e6u'

_v' = _3"" 6v' +ZH

3v' 3v'

Z_ _ue Z_ 3u_
_v' +

3u e _v' 3u_ 3v'
_V vL

(76)

X

3_ 3_ _ v' 3_ v'3v' _v' +_Ue _v'dx + _u_ _v'

3H 6v" 3H 6v" + 3H _ _v" ZH 3__ _v"
_v" = _v--_' 3--$3v" + _¢---r_v"

X

_H _v" _H f w' _H _v": _v" +_ 6v"dx + _--_rw'

0

3H 3_ 3Ue 3H _u$
3H _w' - dw' + _w' +
3w' 3w' 3ue 3w' _u_ _w'

3_ _ _w' + __H._ _w'
_w' + _-_ 3w' _' 3w'

X

3_ _w' + _ _ _H w'- 3w--_ _ w'6w'dx + 3U--Te _w'

X

+ -_ v"_w'dx + v"6w'

0

(77)

It should be noted that the above variation in terms of % (or Ue) could not

have been made if _' (or u_) were also an explicit function of _I (or u),

as might occur for general quasi-coordinates. Substitution of equation (76)

into equation (74) yields
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+ Tv 6v + 8v---r

X

_H So _H v' aH 6v"+ _u e v'6v'dx + 8u----_e 6v' + 8v,---7

Y

+-_ J0 w'Gv"dx + _@' + _w 6w + _w---r '

X

+ _ue 6w'dx + _U-_ew'6w'
0

X

+ -_ v"6w'dx + v"6w'
+ _H 6w" + _ _, '3w,---7 _-_ 6e I + 601 + Lx6U + Ly6V

+ Lz6W + Mx3(6@ 1 + w'6v'_
dx = 0 (78)

Up to now the change of variables in Hamilton's principle is equivalent to a

direct substitution for u e and @ into the partial differential equations

corresponding to equation (74). The single underlined terms appear in the

v and w equations from Ue, and the double underlined terms are from 9. Not

all of these terms are necessarily visible at this step, however, depending on

the order of terms that are retained. The example given below should clarify

the nature of these terms. We now substitute for 601, _@_, 6u, and 6u' in

equation (78)

E
6@ I = 6@ - (w'6v" + v"6w')dx

' = 6 9 ' - W'6V" - V"6W'6@ 1

X

6u = 6u e - S0 (v'6v' + w'_w')dx

6U v = 6u_ - V'6V v - wV6w v

(79)

All of the underlined terms cancel out leaving

LI SH due + _H 6u e + _H _H 6v' + _ 6v"

l_Ue _ -_vv 6v+ _v---r

_H _H _w' + _--_-H,6w"
+ _w 6w + _w---r _w'

- sx 1+ _- d@ + 8-_7,6_H 9' + L x u e - (v'6v' + w'_w')dx I + Ly6V + Lz6W
0 J

I Sox+ Mx3 _ + (w"_v' - v"_w')dx dx = 0
(8O)
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This is precisely the same expression that would have resulted from starting

with the quasi-coordinates and taking the variation directly. Since the vir-

tual work term involves only a straightforward change of variable, Hamilton's

principle is valid when written in terms of quasi-coordinates ue and 4. Thus

the application of Hamilton's principle with variables ue and _ reduces to

So SoL LH dx + (Lx6u e + Ly6v + Lz6W + Mx3_)dx - ' Lx dxl

i (wL L_ L _v fx Lx v" _w dxw" Mx3 dxl ' + ' dxl + Sx "_B dxl
(81)

where the following identity was used:

f0x fxf(x) g(Xl)dX 1 dx = g(x) f(Xl)dX 1 dx
g

(82)

It is observed that the use of the quasi-coordinates u e and _ has the effect

of replacing the terms underlined in equation (78) with integrals of the

applied loads from both the u and 01 equations.

5.2 Example Derivation

An actual derivation of equations will be helpful in understanding the

results from the general development above. Consider a rotating cantilever

beam that undergoes coupled axial deflection and flap (out-of-plane) bending

only. For simplicity we consider only the static equilibrium equations (no

time dependence) for a beam with a vertical distributed load proportional to

x + u and an axial distributed load P. The beam is allowed to be extensional

in that elongation of the elastic axis is allowed. The important special

case where the elastic axis is inextensional is also considered. The position
vector for a point at a distance _ from the elastic axis is

r = (x + u)I + wK + _k (83)

and the axial strain, neglecting elongations with respect to unity (ref. 22),
is

u,2

exx = e + _Kj = u' + -_- +
w '2 _w"

2 ¢i - w '2

1 w,2)' w'2 _w" i + _ (84)mu +--_--
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Application of Hamilton's principle yields

L

.I { EA(u' + w--22)(6u' + w'6w') + EIw"[(l + w'2)_w" + w"w'_w']

0

- P6u - m_2(x + u)_u - K(x + u)_wIdx = o
l

where K is a given constant, A = ffdA and I =ff _2dA.

equations and boundary conditions follow immediately:

-[EA(u' + w-_22)w']'

u = 0

w = 0

w' = 0

(85)

The Euler-Lagrange

e)]- A ' + - m_2(x + u) = P

+ [Elw"(l + w'2)] '' - (Elw"2w') ' = K(x + u)

x= 0 Elw" = 0

(Elw") ' = 0

(86a)

(86b)

x = L (86c)

Let us consider for the moment the case of an inextensional beam. To special-

ize the equations we must do two things: (i) solve equation (86a) for

EA[u' + (w'2/2)] and substitute the result in equation (86b); and then

(2) solve for u in terms of w and substitute into equation (86b). Although

u' + (w'2/2) = 0 for inextensibility, EA ÷ _ for this case and the product

EA[u' + (w'2/2)] is finite, and nonzero in general. For step (i)

L

EA(u' + w--22) = I [m_2(Xl + u) + P]dXl = T
I

X

(87)

Step (2) yields

w '2 T

2 EA
(88)

or, for EA +

if0x- -- w' 2dx
u = 2

(89)
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Thus, the single w equation for an inextensional beambecomes
!

lw [ (x)]I_ , 2 1 ,2d x + dx 1i - 2 w + [EIw"(l + w'2)] '' - (EIw"2w') '

4 0

1 ,2d x
= K - _ w

'0

(90)

with boundary conditions as above.

We now return to the extensional case and make use of the quasi-coordinate

u e so that

i#u = u e - _ w'2dx

w12
UI v

= He 2

EA(u' +_)= EAu;

(91)

Substitution into Hamilton's principle, equation (85), yields

LIEAUe(aU ' + w'aw') + EIw"[(l + w'2)aw '' + w"w'aw'] - Pau

(x rx ) ( xd)j- m_ 2 + u e - _ , w'2dx 6u - K + u e - _ w _ dx
= 0 (92)

The Euler-Lagrange equations are

(_ _0x_x)_(EAUe)' - rmq2 + Ue - -_ w I = p (93a)

(x )-(EAu_w')' + [EIw"(1 + w'2)] '' - (EIw"2w') ' = K + u e - _- w'2dx (93b)

with boundary conditions as above. The underlined term in equations (92)

and (93b) corresponds to (_H/_u_)w'6w' in the Hamiltonian (see equation (78)).

Equations (93a) and (93b) are identical to the result of substituting equa-

tions (91) into equations (868) and (86b). For the case of inextensibility,

we still must follow two steps: (i) solve equation (93a) for EAu_ and sub-

stitute into equation (93b); and (2) substitute u e = 0 into equation (93b).

The result is equation (90).
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To express Hamilton's principle in terms of ue and w alone requires
substitution of

x_u = _u e - _0 w'6w'dx

_u' = _u e - w'6w'

(94)

yielding

! I

EAUe6U e + Elw"[(l + w'2)_w '' + w'w"6w'] - P + m_ 2 + u e

Sox x ) (x   0xdxlwldx01 w '2dx u e- --2 1 - w'6w'dx I - K + u e - _ w =
(95)

The Euler-Lagrange equations are

(x x-(EAUe)' - m_ 2 + u e - _ w' = P (96a)

{w 0Lktl 0x1_ , 2 I + Ue - w'2dx2/_ + dx I + [Elw"(l + w'2)] ''

t xw ax )- (EIw"2w') ' = g + u e - _ (96b)

For the case of inextensibility, we simply set u e = 0 in equation (96b) and

obtain equation (90) directly.

Although no EA terms appear in equation (96b), it is still suitable for

use, along with equation (96a), when EA is finite. The reason for this is

now clear: when the analysis is formulated in terms of the quasi-coordinate

u e at the outset, the substitution for the tension EAu$ is automatically

taken care of. The rest of equation (96a) is, in effect, integrated and sub-

stituted automatically. This example explains why no EAu_ terms appear in

the v and w equations of references 19-21. They do appear in the v and w

equations of reference 8 because the case of the tension axis being offset from

the elastic axis is considered.

At this point, it seems appropriate to comment on the advantages of using

the quasi-coordinates u e and _. Both variables tend in some cases to simplify

the derivations of actual equations of motion (refs. 3-5, 8, and 19-21). It

is also evident that taking the limit for infinite axial or torsional rigidity

may be somewhat simpler.
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6. IN THE LIMIT OF INFINITE TORSIONAL RIGIDITY

Another way of looking at the question of the equivalence of the equations

in references 3-5 and the two sets of equations in reference 8, demonstrated in

section 3, is to consider the special limiting case of infinite torsional

rigidity. It is clear that no matter what variables are used in the analysis

for torsion there is a unique set of equations governing bending deflections

v and w when GJ tends to infinity. For that case, all GJ terms must

vanish from the v and w equations in order to preserve the proper mathemati-

cal structure of the equations. This is similar to the result of the last

section in which all EA terms vanished for the special case of infinite EA.

For equations written in terms of _, such as those of references 3-5,

there are no GJ_' terms in the v and w equations just as there are no

EAu_ terms in the v and w equations of references 19-21. With the order-

ing scheme of references 3-5, all of the terms from the _ equation that are

integrated and substituted into the v and w equations automatically, through

the process of using the quasi-coordinate #, turn out to be negligible (i.e.,

as stated in reference 3, the torsion moment is one order of E smaller than

the bending moments). For infinite GJ, the angle of twist per unit length is

simply the pretwist component 8_; the elastic twist _ and its variation _

are simply set equal to zero because elastic twist about the elastic axis

cannot occur.

For equations written in terms of 81 or @2' the infinite torsional
rigidity constraint is more involved. If 01 or @2 were simply set to zero

nonzero GJ coefficients would remain and the equations would break down.

Instead, the GJ coefficient, equal to Ki - @_, must be set equal to zero

and used to eliminate @I or @2" The following kinematic relations hold to

second order (see eqs. (46)):

_0 x
lim 81 = - v"w'dx + O(c 3)
GJ-_o

X

lim @2 = _0 v'w"dx + 0(_ 3)GJ-_o

(97)

Then, the elastic torsion moment GJ(< i - @_) which is finite and not neces-

sarily zero, must be determined from the torsion equation and substituted into

the v and w equations. In this way all @i or @2 terms and all GJ terms

are eliminated from the v and w equations. Finally, if the aerodynamic

pitching moment is not neglected, the virtual rotation in terms of v and w

alone must be determined from equations (24) or (38) and (97):

lim 6_i = f0 x(w''6v' - v"_w')dx + 0(_ 3)Gj-_o
(98)
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for either 81 or 02 . The total effect of pitching moment is then in the terms

(w" L M
- f_ x3dXl) in the v equation and (v"fL-x Mx3dXl)' in the w equation.

It may be shown that these operations will yield a single set of equations in

v and w regardless of which _zariable 01 or 02 is used. The only second-

order term is the integral term correction to the pitch angle, the "kinematic

pitch rotation" term, first identified in reference 3. The other places that

the integrals appear are in third- and higher-order terms and not particularly

significant. Therefore, it is not correct to simply set 01 or 02 equal to

zero for general nonlinear analysis of torsionally rigid beams. In fact, when

any physical displacement variable u, v, w, 81, 82 that is part of nonlinear

Euler-Bernoulli beam equations must be eliminated because of infinite axial,

bending or torsion stiffness, it must be done by a process similar to the one

outlined above. We have shown that u # 0 when EA _ _, and 81 # 02 # 0

when GJ + _. It is just as easily shown that neither v nor w vanishes when

the bending stiffness in that direction tends to infinity. A single set of

equations, consistent to second order, for a torsionally rigid rotating beam

can be obtained by simply setting _ = 0 in references 4 and 5 or by going

through the process outlined above for either set of the equations in refer-

ence 8.

Another result of equations (97) is that three angles are required to

describe the general orientation of a reference frame in space. Thus, even

for infinite torsional rigidity it is possible for beam bending deformations

to place beam elements in such a position that transformations based on only

two angles cannot describe the orientation of a beam element. This is seen in

the example problem of section 4, in which three nonzero angles may be required

to describe the orientation of a beam element, despite the fact that K i = 0.

The required third angles are given to second order by equations (97).

7. RIGID BEAM APPROXIMATIONS

When cantilevered elastic beams are modeled by an approximate system

that substitutes a rigid, hinged, spring-restrained rod for the elastic beam,

three degrees of freedom are often considered: _, an angular deflection in

the x-y plane (when B = 8 = 0) or lead-lag; B, an angular deflection out

of the x-y plane (when _ = O = 0) or flap; and 8, the pitch angle (when

= B = 0). The nonlinear equations for this case are especially interesting

because six different hinge arrangements can be defined which will lead to six

different sets of nonlinear equations (the linear equations being the same).

Simpler models, assuming no pitch degree of freedom, have been used in pre-

liminary investigations of helicopter rotor blade stability (e.g., ref. 23).

For this case there are two possibilities: flap-lag, where the lead-lag hinge

flaps with the blade, and lag-flap, where the flap hinge lead-lags with the

blade. The two hinge arrangements define two different physical systems with

different dynamic properties although the differences are not large. Differ-

ences in the stability of these two systems were identified and discussed in

reference 3, and reference 6 added further numerical results and extensive

discussion. It was concluded in reference 6 that two different sets of
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equations for a single elastic beam would result from different rotation

sequences and that this could be expected to influence the stability of the

elastic-beam model. This incorrect expectation was based on the correct obser-

vation that rigid-beam models with two different hinge arrangements exhibited

differences in stability. In fact, however, a single set of equations for an

elastic beam can be used to develop the exact equations for a rigid-beam model

with any hinge arrangement. In so doing one must carefully consider the

dependence of the v and w displacements on the hinge arrangement. Further-

more it can be shown that the sequence of rotations used to develop the equa-

tions is arbitrary for any rigid-beam hinge arrangement as well. For simplic-

ity we will perform these operations for a second-order analysis.

Let us assume first a lag-flap hinge arrangement with the lead-lag hinge

at the root and the flap hinge offset from the root at axial distance E.

The limit must be taken as c ÷ 0 to recover the correct hinge arrangement

even for the coincident hinge model used in reference 6. The following dis-
placement functions are assumed

v = _x , v' = _ , v" = 0 x e 0

but, so that the flap hinge lead-lags with the beam,

(99a)

0 x j sl
w = lim = Bx x _ 0

s+0 B(x- _) x > E

I° x=ow _ = lim =

_÷0 B x > c x > 0

w" = lim 86(e) = B6(0) x Z 0

g÷O

(99b)

where 6(_) and 6(0) refer to the Dirac delta function. For a flap-lag

arrangement, we need to reverse the expressions in equations (99) so that

w = Bx ; w' = B ; w" = 0 x _> 0

v= _x x_> 0

v' = I ° x -- 0

x > 0

v" = _5(0) x _> 0

(i00)

To reduce the elastic-beam equations in references 4 and 5 to the torsionally

rigid case we simply set _ = 0. The resulting equations would then contain

the integrals in equations (97) that have different values for the two hinge

arrangements defined by equations (99) and (i00). Evaluation of the integrals

for the lag-flap and flap-lag hinge arrangements yields
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for lag-flap:

0x v"w'dx = 0

X X

_0 v'w"dx = _0 B6(O)_ dx = BC

(iOl)

for flap-lag:

X

v"w'dx = _0 _6(O)B dx = B_

v'w"dx = 0

(102)

The differences between equations (i01) and (102) result in two different sets

of equations for the two different hinge arrangements, and these equations

are, to second order, identical to the rigid-blade equations derived in

reference 6.

For two degrees of freedom B and _ and a given hinge arrangement, any

sequence of rotations (e.g., _i, BI, Ol or B2 , E2 , e2) can be used to formu-

late the equations although it would certainly be more natural to use the

angles associated with rotations about the hinges. The reconciliation of

three angles with only two degrees of freedom is made by use of a holonomic

constraint equation that relates 0 to B and _ (ref. i0, p. 55). For

example, consider writing equations for a flap-lag hinge arrangement in terms

of El' _I' 61' instead of in terms B2' _2 (92 is not needed because the

axes about which _2 and E2 occur are along the hinge axes). Thus 92 = 0

and equation (40) yields

ITI2TI3)9 2 = 0 = 81 + tan -I
TII

(103)

or

91 = -tan-l(sin B 1 tan E l) = -81El + O(s 3) (104)

In fact, as long as the proper constraint is accounted for, any set of vari-

ables can be used to write the equations for any physical hinge arrangement.

When the constraints are properly accounted for, the equations of motion for a

given physical hinge arrangement are equivalent, although different in appear-

ance, for any sequence of rotations used to describe the beam orientation.

The dynamic behavior of the system is then independent of the transformation

sequence used in describing the orientation of the blade. The equations and

dynamic behavior do, however, depend on the physical arrangement of the hinges.
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8. CONCLUSIONS

In this report the large deformation geometry for an Euler-Bernoulli beam

has been developed. Some aspects of the beam kinematics discussed in refer-

ences 3-8, 12, 16, and 17 have been clarified. The following points summarize

the results of this study:

i. The large-deformation kinematics for an Euler-Bernoulli beam are

developed, including the transformation matrix relating the local principal

axes in the deformed state to space-fixed Cartesian axes, the components of

angular velocity and virtual rotation vectors, the torsion, and the components

of bending curvature. The values of all the geometric quantities are unique

at a given instant in time, but the form of the expressions themselves may

depend on the variables used in describing the orientation of the cross sec-

tion during deformation.

2. The angles _I' BI, el are not the same as the angles 82' _2' 82'
both sets of which are discussed in the text. Although the geometry is unique,

the use of the different sequences of rotations may change the appearance of

the geometric expressions.

3. The exact expressions for the large-deformation geometry that are

derived in this report do not depend on the sequence of rotations used in

defining the beam cross-section orientation. Some of these quantities were

also derived previously in references 3-5.

4. The stability and dynamic behavior of an elastic beam are not depen-

dent on the choice of angles used to describe the orientation of the local

beam cross section during deformation. In fact, the two sets of equations

derived in reference 8, based on two different sets of angles, are shown to be

equivalent to each other and to the equations of references 4 and 5.

5. The exact relationship of the pitch rotation angles 01 and e2 and

the elastic twist angle ¢, established in reference 3, is verified along with

the exact transformation matrix first derived therein. The integrals asso-

ciated with these quantities are correct as originally derived in reference 3,

and serve to show that there can be a kinematic pitch rotation of the beam

cross section that depends on bending alone, even when there is no pretwist
and no elastic twist.

6. The kinematic pitch rotation due to bending only that may occur even

in torsionally rigid beams is seen to be mathematically analogous to a kine-

matic shortening that may occur even in axially rigid beams due to bending

only. The torsion variable _ used in this report is the elastic angle of

twist, which is devoid of kinematic pitch rotation due to bending alone. Its

mathematical analog is the axial deflection due to longitudinal strain of the

elastic axis Ue, which is devoid of kinematic axial deflection (foreshorten-

ing) due to bending only.

7. Both the elastic twist angle _ and the axial deflection due to

longitudinal strain of the elastic axis Ue, because they are related to
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physical deflections through integrals and have integrals of angular velocity
and velocity componentsfor kinetic analogs, belong to a certain class of
variables called quasi-coordinates. They have both been used in Hamilton's
principle without the rigorous justification provided in this report. Although
not previously established, their use in references 4, 5, 8, and 19-21 is
found to be valid.

8. Three angles are shownto be required in general to describe the local
cross-section orientation for an elastic beam, even if the torsion stiffness
is infinite. Only one set of equations exist for bending deflections v and
w of an inextensional, torsionally rigid Euler-Bernoulli beam, regardless of
the three angles used in the derivation.

9. Whenthe proper mathematical limits for different hinge arrangements
in a hinged rigid-beam model are imposed on the elastic-beam equations with
rigid-body modeshapes, the correct hinged, rigid-beam equations, for each
particular hinge arrangement, are obtained.

i0. Any three angles can be used to describe the orientation of any
hinged, rigid body as long as the constraints that relate the rotations about
the hinges to the variables in the derivation are properly accounted for. Of
course, it maybe more natural to use the physical angles as variables. It is,
therefore, not the transformation sequence that influences the dynamic
behavior -- it is the physical arrangement of the hinges.

ii. The bending curvatures, torsion, and [T] matrix are developed in the
appendix for six possible sequencesof the angles _, 6, and e. Since values
of the torsion and elements of the [T] matrix are fixed at a given instant in
time, a change of variable maybe found from either quantity to relate the
geometry from any one sequence to that of any other.

AmesResearch Center
National Aeronautics and Space Administration

and

AeromechanicsLaboratory
AVRADCOMResearch and Technology Laboratories

Moffett Field, Calif. 94035, Sept. 28, 1979
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APPENDIX A

KINEMATICS FOR OTHER SEQUENCES

In the text, the development was restricted to only two of the six pos-

sible sequences of rotations _, B, 0. In the appendix we will present expres-

sions for the [T] matrix, the bending curvatures, and the torsion for all six

possible sequences of rotations: (i) _I' BI, el; (2) 82, _2, 82; (3) _3, 93,

83; (4) 84, 94, _4; (5) 85, _5' 85; and (6) 96, 86, _6" The necessary changes
of variable to demonstrate equivalence can be formulated from the torsion and

then the elements of [T] can be shown to be equivalent for all six sequences.

Alternatively, the change of variable can be formulated from the T23 element

of [T] and then the torsion and bending curvatures can be shown to be equiva-

lent for all six sequences. It is the second approach that is employed here.

We will make use of equations (5) extensively, which we repeat here for
convenience

(x + u) + = TII I

Iv+ = T12

w + = TI3

(AI)

These relationships hold for all possible sequences and types of rotations.

The [T] matrix, the bending curvatures, and the torsion are now presented for

each of the six sequences.

(i) _I, BI, (91"- The [T] matrix is

[T] =
-c_ s - s s31c'1 _1 (91 _1

s B +-c8 1 iC_l SslS_l

S

c81 _I

- S S_e81c_I _1 IS(91

-- S S_-s81c_I _1 ic(91

The bending slopes are, from equation (AI)

v + = c_ lS_l

w + = s B
1

v' = _1 + O(e3) I

w' = _I + O(c3)

s81

cB i"(9

CBlC 9

(A2)

(A3)

The rotation rate vector is

K = ¢+K -
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z ]
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Thus

+ + ' + v"w' + O(E_)
<i = O1 + C s61 = O1

+ +

K. = -BIC@I + _ICBIS@J i
= -w" + OlV" + O(E 3

B+ISsI +CBlC e V" + e 1
_,_= + _ = w" + 0(_ 3)
li 1

(2) r52, _2, e2"- The [T] matrix is

[T] =

2CB2 S C SC _2 _2 82

S - S Ce C
-CB2C@2 _2 _2S@2 2 _2

-S B + s02s2C@2 E2cB2 -s@2c_ 2

s o - c o2cg2 2s_2s_2

Jr c c
s82So2S_2 B 2 @ 2

The bending slopes are, from equations (AI)

v+= s
_2

= s ;
w+ c_2 _2

v' = _2 + O(e3)

I
W' = _2 + O(g3)

The rotation rate vector is

(A5)

(A6)

(A7)

(A8)

Thus

= ' - v'w" + 0(_ 3)+ _S = _ 2
<i @2 - _2

+ + w" + @2 v'' + O(g 3)
<. = 2C_2 + = -j -82c@ _2S02

+
+ + B2s @ c

<k = _2c@2 2 _2
= v" + @2 w'' + O(g 3)

(A9)
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(3) _3' 83' 83"- The [T] matrix is

[T] =

c B c + s B s3 _3 3s03 _3

-c03s_3

c3s B + cB3s 0 sf 3 3 _3

C S -- S S C

83 _3 133 03 _3

c@3c_ 3

c -s_s-c!33se3 _3 3 _3

C S

0 3 B 3

s o
3

The bending slopes are, from equation (AI)

v + = c B s
3 _3

w + = c O s B
3 3

-- C

s83s83 _3 v' = _3 - 13383 + °(E3) /

!
W' = 83 + O(e 3)

The rotation rate vector is

I( _ + 8 _3 ][ + S_3 1 <j]

(AIO)

(All)

(AI2)

Thus

+ 8tcBBo ' + v"w' + O(E B)K.l = _3c@BsB B + = 83

+ +

_. = + _3s
3 -83 83

= -w" + 83v" + 0(_: 3)

+
= C

<k _3c83 @3
+ = v" + 03w" + O(c 3)

- O3sB3

(4) 8,+, 8 4 , _4'- The [T] matrix is

c - s t s s
c_4 84 4 84 84

[T] = -s e - s c s
_4 84 84 _4 04

-c o s
4 84

i

c os_4 4

c c

_4 04

-s84

-i

s + s s c
c_4 84 _4 94 8_

-s s + c s c

84 _4 _4 04 64

The bending slopes are, from (AI)

°

v+= s_4c@ 4

= s + s s c ;
w+ c_4 84 _4 04 84

%

v' = _4 + °(_3) I

!w' = 84 + _404 + O(s 3)

(AI3)

(AI4)

(AI5)

44



The rotation rate vector is

(AI6)

Thus

= + + ' v'w"
<i e_c - 6-s c^ = e4 - + o(E3)

_4 4 _4 _4

+ + ,, + 0(_ 3)
<. -64 c ce - @4 s = -w + e4v"
J _4 4 _4

+ t = v" + e4w" + 0(_ 3)
<k = _4 + B s84

(5) 0 s, _5' 65"-

IT] =

The [T] matrix is

-i

- cB s s_ + s_ c
c 6 cB s sB5s055c_5 5 _5c95 5 _5 u5 5 @5

c 5c9 c s-s_5 _ 5 _5 @5

-c s -c s - s s se c6 c@ - s_ s se5 65 65 95 65 _5 5 5 5 5 _5 5

The bending slopes are, from equations (AI)

s c - s s@ = _5 - Bse5 + °(c3) iv+ = cB5 _5 @5 B5 5

Jw+ = c_ s s^ + s B cO 65 + _5e5 + 0(_3)
B5 _5 U5 5 5

The rotation rate vector is

K = e I + _5 1 <j]

(AI7)

(A18)

(AI9)

(A20)

Thus

+ + = e' + v"w' + O(c _)

<i = e5c65c_5 + _5sB5 5

+ + = -w" " + O(e 3)
= - e5s _ + 05v<J -B5 5

+ _ +

<k = _5c65 95c_5sB 5

= v" + @ w" + O(E 3)
5

(A21)
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(6) 86, B6, _6"- The [T] matrix is

[T] =

c c s - + c s_6c I_6 B6 _6c@6 c_6sB6s@6 s66s@6 {6 86

-s c c c + s s s@ c s@ - s s_ c@
_6 86 _6 @6 _6 B6 6 _6 6 _6 _6 6

-s B -c s c B c o
6 136 86 6 6

The bending slopes are, from equation (AI)

v + = s 6c O - c s s ; v' = (6 - B68 + O(e3)6 _6 B6 06 6

W+ = S_6S@6 + C_6SB6C@6 ; W' = B 6 + _6@6 + 0(£ 3)

The rotation rate vector is

= @ I g 6 + < = < i + " + <kkK

Thus

+
= @_C C^

Ki b _6 b6 - B6s6+ = 66' - v'w" + (e 3)

+ - + = -w" + 66 v'' + O(s 3)
Kj = -B6cr 6 06sr_6cB6

+ @+sB6 = v" + 86w<k = <6 - " + O(e3)

(A22)

(A23)

(A24)

(A25)

Demonstration of Equivalence

It can be shown that changes of variables constructed from equating three

elements of the [T] matrix for any two sequences will lead to identical expres-

sions for bending curvatures and the torsion. Only one example is presented

for illustration -- the equivalence of (i) and (2). For convenience we choose

to obtain the change of variable from T23. From equations (AI), (A2),

and (A6), the following relations hold:

v+= C_ S = S
1 _Jl _2

W + = S B = C S
1 _2 B2

= S = S C
T23 CSl Ol 02 _2

-- C S S

e2 _2 B2

(A26)
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Differentiation of equations (A26) yields
+ + +

c - 818 s = _2c_2

+

+ +
- s

01CSlCtll _iSSl @I

+ - + S

_2C_2CB2 _2s_2 [{2

c +s 0 - s02 02 _2 2s_2s_2 _2 82 $2

)+s c - <2c0 c s
+ ce2 _2 62 2 _2 82

(A27)

Thus

c B = _ I- Sk = _l-c2s 2I 81 _2 132

s S

_2 _2
S -- --

_I c B _i- c 2 s 21 _2 82

= _i - s 2CCl _I

c{2c82

s o

- c s s
so2e82 02 _2 _2

1 _i - e 2 s 2_2 62

= _/1 - S 2

01 V- 01

c 0 + s2cfl2 o2S_2Sg2

V1 - c 2 s 2{2 62

(A28)
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Crespo da Silva, M. R. M.: Flexural-Flexural Oscillations of Beck's

Column Subjected to _ Planar Harmonic Excitation. J. Sound & Vibra-

tion, vol. 60, no. i, 1978, pp. 133-144.

Petersen, Dieter: Nonlinear Transformation Matrix of the Elongated,

Bent and Twisted Rod. ESA-TT-379-revised, October 1977 (Translation

of DLR-FB 76-62, DFVLR, March 1976).

Rosen, A.; and Friedmann, P. P.: Nonlinear Equations of Equilibrium for

Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deforma-

tion. Univ. of California, Los Angeles, School of Engineering and

Applied Science Report, UCLA-ENG-7718, January 1977 (revised June 1977).

Kaza, Krishna Rao V.: Aeroelastic Stability of Wind Turbine Blades.

NASA CP-2034, DOE Publication CONF-771148, November 1977, pp. 61-69.

Wauer, J.: Contribution to the Stability Problem of Elastic Bars in

Torsion (Ein Beitrag zum Stabilitatsproblem tordierter elasticher

Stabe), ZAMM, vol. 47, 1977, pp. T95-T97.

Vigneron, F. R.: Comment on Mathematical Modeling of Spinning Elastic

Bodies for Modal Analysis. AIAA J., vol. 13, no. i, 1975, pp. 126-127.

Kaza, K. R. V.; and Kvaternik, R. G.: Nonlinear Flap-Lag-Axial Equations

of a Rotating Beam. AIAA J., vol. 15, no. 6, 1977, pp. 871-874.

Kvaternik, Raymond G.; White, William F., Jr.; and Kaza, Krishna R. V.:

Nonlinear Flap-Lag-Axial Equations of a Rotating Beam with Arbitrary

Precone Angle. Proceedings of the AIAA Structures, Structural Dynam-

ics and Materials Conference, Bethesda, Maryland, April 3-5, 1978,

pp. 214-227.

Novozhilov, V. V.: Foundations of the Nonlinear Theory of Elasticity.

Translated edition by Graylock Press, Rochester, New York, 1953.

Ormiston, Robert A.; and Hodges, Dewey H.: Linear Flap-Lag Dynamics of

Hingeless Helicopter Rotor Blades in Hover. J. Am. Helicopter Soc.,

vol. 17, no. 2, 1972, pp. 2-14.
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Differentiation of equations (A26) yields

+ + +

_ic8 c - _i s s = _2c_2

+ +

@ic6 cfl - @isB s
l 1 1 @I

+ +

- _2s s
@2c_2c62 2 B2

)+C - _2c92c s+ c@2s_ 2 B 2 2 82

(A27)

Thus

I _I 2s

s s
_2 [2

s_1 c@t _I- c 2 s s_2 _2

c c
<2 _2

c_ 1 _I 1 - c 2 S 2

r_2 62

- c o s s
so2cB2 2 _2 @2

@I _- c 2 s2<2 _2

c9 1 s_ 1

c02cB2 + So2S_2S82

(A28)
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Substitution of equations (A28) into (A27) yields
+

+ c - _2s s_2c_2 B2 2 _2+

B 1 =

_i - c 2 s 2_2 B2

+ _ s_2s_ 2 2c_2c_2 - _2s_2s_

_1 =--+ .......

e_ 2 C_ 2 _ i- c 2 S_

+
+ + _2sB c c

_2S{2 2 _2 _2
+ 9+

91 = 2 -
i- c 2 s 2

_2 82

Substitution of equations (A27) through (A29) into equations (A5) yields for

1

+ + + c

B2s_2 _2sB2c_2 B 2

Is82c_ 2 + 2c_2c_ 2 - 62s_2s B

2 + s S - ----
CB2 _2 _2 17 C 2 S 2

_2 _2

+ +

= 02 - s_2F 2 (A29)

which is identical to the expression for K i in equations (A9). The bending

curvatures also transform identically. Similarly, the other four

sequences (3)-(6) can be shown to be equivalent to (I). The changes of

variable to second order may be determined by inspection, which proves that

all six sequences are also equivalent to second order.
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